
This is the in-progress documentation for the current version of Quire (v1). If you are using a legacy version (v0), please visit our older documentation.
Site Title: Quire
Table of Contents
	About	What Is Quire?	Features & Functionality
	Is Quire Right for You?

	History
	Who We Are	Core Team
	Contributors

	Community	Get Involved	Answer Forum Questions
	Share Your Work
	Present Your Project
	Organize an Event
	Submit or Fix a Bug
	Edit Documentation
	Write a Recipe
	Test Documentation
	Become an Ambassador

	Community Showcase
	News & Events	Upcoming Events
	News
	Past Events

	Forum

	Docs v0

	Docs v1	Key Changes in Version 1	Content Directory
	YAML Files
	Config.yaml
	Page YAML
	Subsection Landing Pages
	Shortcodes
	Preview URL
	CLI Commands

	Quire Basics Tutorial	Getting Started
	1. Understand the Command-Line Shell
	2. Install Quire
	3. Create a New Project
	4. Preview Your Project
	5. Work in a Text Editor
	6. Enter Publication Metadata
	7. Edit Content
	8. Add Images
	9. Customize Styles
	10. Output Your Project
	Congratulations! Now What?

	Implementation Considerations	Licensing
	Technology Requirements
	Skill Requirements
	Affiliated Costs
	Content Compatibility
	Versioning

	For Developers	Repositories
	Configuration
	Publication API
	Shortcodes API

	Install or Update	Install Quire v1 (macOS)
	Install Quire v1 (Windows)
	Update Quire
	Update an Existing Project
	Re-Install Legacy Versions of Quire
	Uninstall Quire

	Get Started	Start a New Project
	Copy an Existing Project
	Files for Content Creators and Editors
	Files for Developers
	Create a Publication Outline
	Add Text and Images
	Preview and Edit a Project

	Quire Commands	Start and Preview Projects
	Output Files
	Get Help
	Not Yet Implemented
	Helpful Non-Quire commands

	YAML & Markdown	YAML Basics
	Markdown Basics
	Markdown Output configuration
	Markdown Special Cases
	Markdown Resources
	Microsoft Word to Markdown Conversion

	Metadata & Configuration	Adjust the Default Publication Settings in config.yaml File
	Add and Edit Important Metadata in publication.yaml File

	Page Types & Structure	Page YAML
	Define Page Types
	Organize Pages in the Right Order
	Create Section Landing Pages
	Create Publication Cover Page
	Hide/Show Pages

	Table of Contents & Sidebar Menu	Table of Contents
	Sidebar Menu

	Page Content	Start with Page YAML
	Format Text Content with Markdown
	Use Shortcodes to Add Features
	Use HTML to Add Styles
	Apply Different Types of Links

	Accordion Sections	Wrap Content in the Accordion Shortcode
	Copy Links to Accordion Sections
	Customize Accordion Link Names
	Set an Accordion to Be Open by Default
	Add Accordion Global Controls
	Configure the Accordion Shortcodes

	Figure Images	Include Image Files in Your Publication
	Create a figures.yaml File for Figure Image Metadata
	Insert Figure Images with {% figure %} Shortcode
	Style Figure Images
	Create and Style Figure Groups with the {% figuregroup %} Shortcode
	Add Video Figures
	Add Soundcloud Files
	Add Tables

	Figure Images: Deep Zoom with IIIF	Create a Zooming Image
	Preview and Build a Project with Zooming Images
	Improve Performance
	Add Existing External IIIF Images

	Figures Images: Sequences & Rotations	Prepare the Sequence Image Files
	Write the Figure YAML
	Display the Image in Your Project

	Citations & Bibliographies	Capture Bibliographic Information in YAML
	Add In-text Citations
	Display a Bibliography

	Collection Catalogues	Capture Object Data
	Create Object Pages
	Generate Object Lists/Grids

	Copyright & About Pages
	Contributors	Add Contributors to Your Project
	Format Contributors on Your Cover
	Display and Format Contributors in Page Headers

	Style Customization	Change the Theme Style Variables
	Add Custom Styles
	Add Custom Classes to Pages
	Override Theme Templates

	Font Customization	Customize Fonts
	Add a New Font

	Output Your Project	Site Output
	E-Book Output
	PDF/Print Output

	Deploy Your Project	Basic Deploy
	Netlify
	GitHub Pages

	Troubleshooting	Installation
	Quire Commands
	Other Issues

	Resources	Videos & Articles	Webinars & Demos
	Presentations
	How-To Guides
	Articles

	Technical Resources	Command Line
	GitHub
	HTML & CSS
	Eleventy
	IIIF
	Markdown
	Netlify
	PDFs and PrinceXML
	PDFs and Paged.js
	Static Site Generation
	Text Editors
	YAML

	Quire Cheatsheet	Design Guide
	Markdown
	YAML
	Shortcodes

	Pre- & Post-Publication Opportunities	Pre-Publication
	Post-Publication

	Sample Quire Workflow	Project Roles
	Pre-transmittal
	Transmittal & First Pages
	Second Pages
	Final Pages
	Launch

	Recipes
	Accessibility Principles
	Glossary
	GitHub	Host Your Project’s Code on GitHub
	Clone an Existing Project from GitHub
	Manage Project Changes on GitHub
	Collaborate with Others Using GitHub
	Manage Third Party Assets with GitHub

	Get Started
	GitHub

This site was created using Quire™, a multiformat publishing tool owned by the J. Paul Getty Trust.
© 2017 J. Paul Getty Trust
This documentation is licensed under a Creative Commons Attribution4.0 International License.
This work is licensed under a
Creative Commons Attribution 4.0 International License
To view a copy of this license,
visit https://creativecommons.org/licenses/by/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042.

	GitHub
	Newsletter
	Contributing
	About
	Contact
	Code of Conduct
	Privacy Policy
	Terms of Use

Skip to Main Content
	About
	Community
	Docs v0
	Docs v1
	Resources
	Get Started
	GitHub

Search

Table of Contents
58/72

Output Your Project
Produce online, PDF, and E-Book versions of your publication

	Site Output
	E-Book Output
	PDF/Print Output

Produce online, PDF, and E-Book versions of your publication

Quire is designed to create a website version, a PDF version and two e-book versions of your project from the same source files. Each can be customized in various ways as described below. Once your outputs are ready, visit the Deploy Your Project section of our documentation to learn how to deploy your project to the web.
	Read more about hiding/showing particular pages in particular outputs in the Page Types & Structure section of this guide.

Site Output
Create the HTML files for your project by running quire build in your command-line shell. The files will be built into your project’s _site folder along with all the necessary static assets like image files, stylesheets and script files. The _site file will be updated and overwritten each time you run quire build.
Note that quire build creates the files for the online edition of your Quire project only. Read about creating EPUB and PDF editions in the sections below.
	If you are a Windows user, please visit the Troubleshooting section of our documentation for a workaround to a known quire build related issue.

E-Book Output
Quire outputs reflowableDefinition: reflowable: A “reflowable” format is one where the text and images are not fixed in static layout like that of a printed book, but rather reflow or rearrange depending on the type and size device they are viewed on. Both web browsers and e-book readers are considered reflowable mediums. e-books in the EPUB file format. EPUB is the most widely used format and will work on most devices and for most e-book vendors. EPUB is an official specification of the World Wide Web Consortium (W3C), and Quire outputs the latest version: EPUB 3.2.
Create and View the E-Book Files
When creating an EPUB, first run quire build in your command-line shell to generate files with your latest changes. Next run quire epub. An epubjs.epub file will be created and saved to your project’s main directory. This file will be updated and overwritten each time you run quire epub.
EPUB files can be viewed on the default Books app on macOS, or on a number of free EPUB readers available for both Windows and Mac.
To include the EPUB file as a download from your online edition:
	Rename the epubjs.epub file if you would like

	Move the EPUB file into your content/_assets/downloads/ directory (create the downloads directory if it does not already exist)

	Confirm that the resource_link information in your content/_data/publication.yaml file to points to the EPUB file you just generated
- type: other-format
 name: EPUB
 media_type: application/epub+zip
 link_relation: alternate
 url: /_assets/downloads/epubjs.epub

	Run quire build again to generate new _site files with the EPUB included inside

EPUBCheck Validation
If you will be distributing your EPUB file via e-book vendors/distributors, it will have to pass validation with EPUBCheck. EPUBCheck verifies that the file conforms to EPUB standards which ensures that it will work properly across devices. A valid EPUB will also ensure a valid MOBI file.
Quire’s default output will pass EPUBCheck, but the EPUB standard is very strict and a number of things can lead to an invalid file. By far the most common errors are broken internal links in markdown files to other files or to heading or image anchors within the file.
While there is an online validator for smaller files (10MB or less) we recommend downloading EPUBCheck and using it directly.
	Download and install Java from https://www.java.com/.
	Download the ZIP file of the latest EPUBCheck release from https://github.com/w3c/epubcheck/releases.
	Unzip the downloaded folder. Inside it is a epubcheck.jar file that you’ll reference in the next step.
	In Terminal or PowerShell Admin type: java -jar path-to-epubcheck.jar path-to-output.epub

EPUBCheck will output a list of any errors or warnings that exist in your file. Only the errors need to be addressed for the file to be considered valid by most e-book vendors. Warnings are optional. Errors will be referenced by filename and line number. The filenames will be internal EPUB naming and not correspond to anything in your markdown project files. See the tip below for looking inside the EPUB file to track down the source of these listed errors.
	Look inside an EPUB file by opening it in a text editor like Atom, or by manually changing the file suffix to ZIP and uncompressing the file. Just note that you can’t/shouldn’t make change to an EPUB file this way. Rather, make changes in the source markdown and YAML files of your project and re-output the EPUB file.

EPUB Styles
EPUBs in Quire have their own style sheet separate from any styles applied to the online version of your project. EPUB styles can be modified and added to in the content/_assets/styles/epub.scss file.
PDF/Print Output
When creating a PDF, first run quire build in your command-line shell to generate files with your latest changes. Next run quire pdf. A pagedjs.pdf file will be created and saved to your project’s main directory. This file will be updated and overwritten each time you run quire pdf.
Quire’s PDF output is generated by Paged.js, an open source HTML-to-PDF generator.
Alternatively, you can use PrinceXML to generate your PDF. PrinceXML is free to download for non-commercial use, though it does add a logo watermark to the first page of the PDF ouput. A desktop license can be purchased that will remove the watermark and also allow for commercial use. With PrinceXML installed, run quire pdf --lib prince to generate your PDF.
To include the PDF file as a download from your online edition:
	Rename the pagedjs.pdf (or prince.pdf) file if you would like

	Move the PDF file into your content/_assets/downloads/ directory (create the downloads directory if it does not already exist)

	Confirm that the resource_link information in your content/_data/publication.yaml file to points to the PDF file you just generated
- type: other-format
 name: PDF
 media_type: application/pdf
 link_relation: alternate
 url: /_assets/downloads/pagedjs.pdf

	Run quire build again to generate new _site files with the PDF included inside

Output the PDF for Print or for Web
By default, the PDF is output at full-resolution and with crop marks for professional printing. Figure images are included in the PDF at the same size they were added to the content/_assets/images/ directory, except when the images have been designated as zooming with zoom: true in the figures.yaml file. For zooming images, Quire processes and uses a special image that’s 2025px wide for the PDF and EPUB output. These are large enough for a full-page image in a printed book. This value can be changed in _plugins/figures/iiif/config.js, for instance to make the images smaller for a web-ready PDF. PDFs can also be downsampled to a smaller file size after they have been generated, using a program like Adobe Acrobat.
Crop marks and bleeds can be removed using the variables in the content/_assets/styles/variables.scss file (which is further discussed below).
$print-bleed: 0;
$print-crop-marks: false // true | false

Use Built-In Variables to Modify and Style the PDF
Quire creates the PDF from the website version of your Quire site using CSS rules. You can modify Quire’s PDF styles using CSS just like you would modify Quire’s online styles. You can read more about styles in general in the Style Customization section of this guide.
There are a number of CSS variables defined in Quire that allow you to adjust various parts of the PDF output, including the page size. The default page size is 8.5 × 11 inches.
In the content/_assets/styles/variables.scss file, are a number of key print/PDF-related variables:
// Print/PDF stylesheet
// ---
$print-width: 8.5in;
$print-height: 11in;
$print-bleed: .125in;
$print-crop-marks: true // true | false

$print-bottom-margin: 0.875in;
$print-top-margin: 0.75in;
$print-outer-margin: 0.75in;
$print-inner-margin: 1in;

$print-base-font-size: 8.5pt;
$print-text-color: $black;

$print-splash-color: $off-white;

$print-entry-image-color: $black; // or can use $rich-black with PrinceXML
$print-entry-caption-color: $white;
$print-entry-image-display: all; // first | all

Add Custom Styles to Refine the Layout
Where a variable is not available, you can instead add custom CSS to your content/_assets/styles/custom.css file to achieve the desired result. You can target changes to only the print output by wrapping your CSS rules in a media queryDefinition: media query: A media query is a method in CSS of applying styles to only specific media. For instance, only to print, or only to screens of a certain minimum or maxium width such as in responsive design. Read more in https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries.
For example, this would hide all video elements in the print output:
@media print {
 video {
 display: none;
 }
}

Some of the CSS used in styling the PDF is from the CSS Paged Media Specification. This is a set of CSS rules designed specifically to style things in a page-like manner, including controlling left and right page rules, page numbering, and running feet and heads. There is good information about this in Paged.js’s documentation as well as in PrinceXML’s documentation. For the most part, the CSS rules documented for one are also applicable to the other. The one primary exception are any CSS attributes that begin with a custom -prince name.
Use These Copy-and-Paste Styles to Fix Common Figure Issues
Custom CSS can be particularly useful in addressing common layout issues in the PDF output like extra white space or awkward breaks at the end of columns and pages.
The following examples illustrate common scenarios and offer sample CSS that can be copy and pasted into your project’s content/_assets/styles/custom.css file. Many require using PrinceXML to generate your PDF rather than Paged.js. Note too that these styles have been wrapped in a print @media query to ensure they only affect the PDF/print output and not the figures as they appear online.
	This level of CSS refinement should be done as late in the publishing process as possible, as any content changes might shift the way the pages flow and undo the CSS work you did.

Reduce White Space by Changing Figure Width
If a figure is too large to fit at the bottom of a page or column, then it will bump to the next page, leaving extra white space in its place. To eliminate this white space, CSS can be used to adjust the width of the figure until it is small enough to fit in the open space. In this example, we’ve created a custom CSS style to make the figure 85% of its normal width (pdf-85-percent-width), and applied that style to the shortcode for the figure.
{% figure 'fig-01' 'pdf-85-percent-width' %}

A custom CSS style can be defined and applied to change the width of a figure to help it fit within the available white space rather than having it bump to the next column or page.
CSS
@media print {
 .q-figure.pdf-85-percent-width img,
 .q-figure.pdf-85-percent-width figure figcaption {
 max-width: 85%;
 margin-left: auto;
 margin-right: auto;
 }
}

Note that while this CSS is specific for 85% width, this same pattern can be repeated to for any percentage width that might be necessary by changing the class name and the max-width value. The auto margins ensure the figure and caption are centered. Removing them will align them to the left.
Refine Page and Column Breaks Around Figures
CSS can also be used to force a break before or after a figure. This can be useful in scenarios such as the one illustrated here, where a heading has been separated from its main text. Using pdf-column-break-after to force a break after the figure in the left-hand column, pushes the heading into a more sensible location. Note that column breaks are supported in PrinceXML but not in Paged.js. Both tools support page breaks.
{% figure 'fig-01' 'pdf-column-break-after` %}

A custom CSS style can be defined and applied to insert breaks before or after a figure. In addition to breaking before or after a page, PrinceXML can also break before or after individual columns.
CSS
@media print {
 .q-figure.pdf-page-break-after {
 break-after: page;
 }
 .q-figure.pdf-page-break-before {
 break-before: page;
 }
 /* Only works with PrinceXML */
 .q-figure.pdf-column-break-after {
 break-after: column;
 }
 .q-figure.pdf-column-break-before {
 break-before: column;
 }
}

Eliminate White Space and Align Figures to the Top of the Page
If you use PrinceXML to generate your PDF, there are some additional options available to you. In particular is the ability to float an image to the top of the page. Figures that are floated to the top of the page will allow the text after them to flow past them and into the preceding column or page. This can be useful to fill in white spaces that are too small for a figure even if the figure has a reduced width.
{% figure 'fig-01' 'pdf-float-top` %}

A custom CSS style can be defined and applied to float a figure to the top of the page when the PDF is generated with PrinceXML rather than Paged.js. This allows the text to flow past the figure and fill up preceeding white space.
Floats can likewise be used to eliminate small, awkward chunks of extra lines that might appear above a figure.

PrinceXML’s ability to float figures to the top of the page is useful in achieving a cleaner layout, aligning the figure(s) to the top of the page and eliminating awkward chunks of text that might have been stuck there.
CSS
@media print {
 /* Only works with PrinceXML */
 .q-figure.pdf-float-top {
 float: none;
 -prince-float: top;
 margin-top: 0 !important;
 }
}

Read more about PrinceXML’s float options in their documentation and quick guide.
Make a Figure Two Columns Wide
Also specific for PrinceXML output, figure images can be styled to span both columns. This can help very short, horizontal images or images with a lot of text or other details be more legible. In these cases, it’s also often useful to float the image to the top to avoid a two-column image from appearing in the middle of the page and breaking up the columns of text.
{% figure 'fig-01' 'pdf-two-column pdf-float-top` %}

A custom CSS style can be defined and applied to enlarge a figure across two columns of text when the PDF is generated with PrinceXML rather than Paged.js.
CSS
@media print {
 /* Only works with PrinceXML */
 .q-figure.pdf-two-column {
 column-span: all;
 }
}

Tips for PDF Design and Development
For developers and designers interested in making more extensive changes to the PDF output like the layout refinements documented above, you can make the process easier by using a PDF reader that will auto-reload, displaying a version of the PDF output in your browser, and testing changes in HTML first.
Use an Auto-Reloading PDF Reader
Adobe Acrobat (a popular PDF reader) won’t reload the PDF you’re looking at if the file has been changed. We recommend instead using a PDF reader, like Skim for macOS, that will reload the PDF every time it’s changed. For Quire development, this means you can open the PDF to a page you want to make a style change to, make the change in your project, run quire build and quire pdf and see that change happen as soon as the PDF process is finished running. It takes away the wasted time of closing PDFs, opening new versions and finding your place in them time and time again.
Display the PDF Version in a Browser
You can use your browser to display a decent, though not exact, preview of what the print output will be. It won’t have the correct page sizes or margins and page numbering, but you’ll see the overall text sizes and styles, figures, spacing between these elements, and other parts generally as they’ll look in the PDF. This means that you can make changes to your CSS and see a live preview in the browser without having to output the PDF every time.
	Run quire build and quire pdf as normal.

	Open the _site/pdf.html file in Firefox or Chrome. This is a single file of your entire Quire project. It will look a little different and some elements from the normal preview will be missing or altered.

	Right or Control-Click anywhere in the browser window.
Firefox: Select Inspect Element and then click the small page icon in the upper right of the window that opens. (On hover, the icon will say “Toggle print media simulation for the page”.)
Chrome: Select Inspect, click the three-dots menu icon in the upper right of the window that opens, select More Tools, and then Rendering. In the area that opens, scroll down to “Emulate CSS media type” and select “print”.

You can also use the web inspector to help track down different HTML elements and CSS selectors that are effecting the final PDF output. This can make it easier to make changes that will have the desired effect.
Test Changes in HTML First
While the normal process for PDF development requires running quire build and then quire pdf every time you make a change to your content and style files, it can sometimes be advantageous to skip the build process and test your change in the HTML that generates the PDF first.
Quire’s PDF file is generated solely from the _site/pdf.html and _site/pdf.css files that are created every time you run quire build. It is possible to make a manual change to either one and run quire pdf to test the result, skipping the build process. For example, you could find the markup for a particular figure you want to target in the pdf.html file, like this markup for fig-1:
<figure id="fig-1" class="q-figure q-figure--image">

 <figcaption class="q-figure__caption" data-outputs-include="epub,pdf">
 ...
 </figcaption>
</figure>

You can then add one of the custom classes as described above to it. Note that classes in HTML are separated from one another with a space, and do not include the leading period (.) they have in CSS. Also, if the class you’re adding was not already in your custom.css file, you will need to temporarily add it to the bottom of the pdf.css for it to work.
<figure id="fig-1" class="q-figure q-figure--image pdf-85-percent-width">

Save your changes and then run quire pdf to see the result. If it looks good, you can go back and add that same class into the shortcode in your source Markdown files and the styles for it into the custom.css file as needed. If it doesn’t look good, you can try a new custom class and quickly check the result with quire pdf again.
Temporarily skipping the build process in this way can save a lot of time, though it requires an extra amount of care to ensure that the temporary changes you make are brought back into your source files.
	Remember that any time you run quire build any changes you made to the _site/pdf.html and _site/pdf.css will be erased.

Improve this page

Close search window

Search

	
| words

